Skip to Main Content

Medicine: Inferential statistics: Tests of relationships

This guide is intended to assist students and researchers to find resources in Medicine

Inferential Statistics: Test of Relationships

Tests of relationships need to be conducted whenever your research attempts to determine if two or more variables show a pattern of association. "Hypothesis tests are statistical tools widely used for assessing whether or not there is an association between two or more variables."

(Reference: Gonzalez-Chica, D. A., Bastos, J. L., Duquia, R. P., Bonamigo, R. R., & Martínez-Mesa, J. (2015). Test of association: which one is the most appropriate for my study?. Anais brasileiros de dermatologia, 90(4), 523–528.)

The resources in this section will guide you to analyse different types of relationship (e.g. association or causation) with the appropriate test for association (e.g. Chi Square, correlation, regression).

Books Available in UM Library

Online Resources

1 WHO Implementation Research Toolkit> Research Methods>Data Analysis. http://adphealth.org/irtoolkit/research-methods-and-data-management/data-analysis.html

2. Gonzalez-Chica, D. A., Bastos, J. L., Duquia, R. P., Bonamigo, R. R., & Martínez-Mesa, J. (2015). Test of association: which one is the most appropriate for my study?. Anais brasileiros de dermatologia, 90(4), 523–528. https://doi.org/10.1590/abd1806-4841.20154289. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4560542/

 

3. Thiese MS. Observational and interventional study design types; an overview. Biochem Med (Zagreb). 2014;24(2):199-210. doi: 10.11613/BM.2014.022. Epub 2014 Jun 15. PMID: 24969913; PMCID: PMC4083571. https://pubmed.ncbi.nlm.nih.gov/24969913/

 

4. Diener E, Oishi S, Tay L. Advances in subjective well-being research. Nat Hum Behav. 2018 Apr;2(4):253-260. doi: 10.1038/s41562-018-0307-6. Epub 2018 Feb 12. PMID: 30936533. https://pubmed.ncbi.nlm.nih.gov/30936533/

 

5. Bothwell LE, Avorn J, Khan NF, Kesselheim AS. Adaptive design clinical trials: a review of the literature and ClinicalTrials.gov. BMJ Open. 2018 Feb 10;8(2):e018320. doi: 10.1136/bmjopen-2017-018320. PMID: 29440155; PMCID: PMC5829673. https://pubmed.ncbi.nlm.nih.gov/29440155/

 

6. Kim TK, Park JH. More about the basic assumptions of t-test: normality and sample size. Korean J Anesthesiol. 2019 Aug;72(4):331-335. doi: 10.4097/kja.d.18.00292. Epub 2019 Apr 1. PMID: 30929413; PMCID: PMC6676026. https://pubmed.ncbi.nlm.nih.gov/30929413/

 

7. Peterson J, Pearce PF, Ferguson LA, Langford CA. Understanding scoping reviews: Definition, purpose, and process. J Am Assoc Nurse Pract. 2017 Jan;29(1):12-16. doi: 10.1002/2327-6924.12380. Epub 2016 Jun 1. PMID: 27245885. https://pubmed.ncbi.nlm.nih.gov/27245885/

 

8. Zorzela L, Golder S, Liu Y, Pilkington K, Hartling L, Joffe A, Loke Y, Vohra S. Quality of reporting in systematic reviews of adverse events: systematic review. BMJ. 2014 Jan 8;348:f7668. doi: 10.1136/bmj.f7668. PMID: 24401468; PMCID: PMC3898583. https://pubmed.ncbi.nlm.nih.gov/24401468/

 

9. Wang Y, Rosenberger WF, Uschner D. Randomization tests for multiarmed randomized clinical trials. Stat Med. 2020 Feb 20;39(4):494-509. doi: 10.1002/sim.8418. Epub 2019 Dec 17. PMID: 31846110. https://pubmed.ncbi.nlm.nih.gov/31846110/

 

10. Sepehri A, Slobogean GP. Which study outcomes change practice. Injury. 2020 May;51 Suppl 2:S71-S76. doi: 10.1016/j.injury.2019.10.082. Epub 2019 Oct 26. PMID: 31708094. https://pubmed.ncbi.nlm.nih.gov/31708094/