Skip to main content
It looks like you're using Internet Explorer 11 or older. This website works best with modern browsers such as the latest versions of Chrome, Firefox, Safari, and Edge. If you continue with this browser, you may see unexpected results.

Biohealth, Bioinformatics & Biotech: Databases

Welcome to the guide for the Biohealth, Bioinformatics & Biotech. Here you'll find resources and information that will assist you with your research. Click on the tabs on this page to uncover detailed lists of information sources

How to access the library's databases

To access the databases you will need to have the library ID. It is the x number on top of the barcode which can be found at the back of your matric card. 

  1. To access the portal, simply enter the library ID into the blank box located on top of the library website
  2. To request for document delivery, get in the interaktif portal using the same library ID.

Recommended Databases


The following are recommended databases that can be used to search for information on Biohealth, Bioinformatics & Biotech :

Recent Articles in Bioinformatics (indexed in Web of Science)


Bennasar, M., Hicks, Y., & Setchi, R. (2015). Feature selection using Joint Mutual Information Maximisation. Expert Systems with Applications, 42(22), 8520-8532. doi: 10.1016/j.eswa.2015.07.007

Blackall, L. L., Wilson, B., & Van Oppen, A. J. H. (2015). Coral-the world's most diverse symbiotic ecosystem. Molecular Ecology, 24(21), 5330-5347. doi: 10.1111/mec.13400

​Cai, Y. P., Weng, K., Guo, Y., Peng, J., & Zhu, Z. J. (2015). An integrated targeted metabolomic platform for high-throughput metabolite profiling and automated data processing. Metabolomics, 11(6), 1575-1586. doi: 10.1007/s11306-015-0809-4

Cardona, N. I., Moncada, D. M., & Gomez-Marin, J. E. (2015). A rational approach to select immunogenic peptides that induce IFN-gamma response against Toxoplasma gondii in human leukocytes. Immunobiology, 220(12), 1337-1342. doi: 10.1016/j.imbio.2015.07.009

​Chen, F., Qu, J. F., Hao, S. J., Liang, S., & Li, G. (2015). Identification of the Microbial Community Structure and Potential Mechanism of Environmental Adaptation in Contaminated Environments. Geomicrobiology Journal, 32(10), 861-867. doi: 10.1080/01490451.2015.1010752

Ding, C. C., Chen, T., Yang, Y., Liu, S., Yan, K., Yue, X. L., . . . Chen, S. Y. (2015). Molecular cloning and characterization of an S-adenosylmethionine synthetase gene from Chorispora bungeana. Gene, 572(2), 205-213. doi: 10.1016/j.gene.2015.07.062

Gohari, A. M., Ware, S. B., Wittenberg, A. H. J., Mehrabi, R., Ben M'Barek, S., Verstappen, E. C. P., . . . Kema, G. H. J. (2015). Effector discovery in the fungal wheat pathogen Zymoseptoria tritici. Molecular Plant Pathology, 16(9), 931-945. doi: 10.1111/mpp.12251

​Greene, C. S., Tan, J., Ung, M., Moore, J. H., & Cheng, C. (2016). Big Data Bioinformatics (vol 229, pg 1896, 2014). Journal of Cellular Physiology, 231(1), 257-257. doi: 10.1002/jcp.25077

Hanlon, M. R., Vaughn, M., Mock, S., Dooley, R., Moreira, W., Stubbs, J., . . . Pence, E. (2015). Araport: an application platform for data discovery. Concurrency and Computation-Practice & Experience, 27(16), 4412-4422. doi: 10.1002/cpe.3542

Honardoost, M. A., Naghavian, R., Ahmadinejad, F., Hosseini, A., & Ghaedi, K. (2015). Integrative computational mRNA-miRNA interaction analyses of the autoimmune-deregulated miRNAs and well-known Th17 differentiation regulators: An attempt to discover new potential miRNAs involved in Th17 differentiation. Gene, 572(2), 153-162. doi: 10.1016/j.gene.2015.08.043

Honardoost, M. A., Naghavian, R., Ahmadinejad, F., Hosseini, A., & Ghaedi, K. (2015). Integrative computational mRNA-miRNA interaction analyses of the autoimmune-deregulated miRNAs and well-known Th17 differentiation regulators: An attempt to discover new potential miRNAs involved in Th17 differentiation. Gene, 572(2), 153-162. doi: 10.1016/j.gene.2015.08.043

Irwin, M. R., Olmstead, R., Breen, E. C., Witarama, T., Carrillo, C., Sadeghi, N., . . . Cole, S. (2015). Cognitive Behavioral Therapy and Tai Chi Reverse Cellular and Genomic Markers of Inflammation in Late-Life Insomnia: A Randomized Controlled Trial. Biological Psychiatry, 78(10), 721-729. doi: 10.1016/j.biopsych.2015.01.010

Kanth, B. K., Kumari, S., Choi, S. H., Ha, H. J., & Lee, G. J. (2015). Generation and analysis of expressed sequence tags (ESTs) of Camelina sativa to mine drought stress-responsive genes. Biochemical and Biophysical Research Communications, 467(1), 83-93. doi: 10.1016/j.bbrc.2015.09.116

​Keller, R. C. A. (2015). The role and significance of potential lipid-binding regions in the mitochondrial protein import motor: an in-depth in silico study. 3 Biotech, 5(6), 1041-1051. doi: 10.1007/s13205-015-0310-9

Mihasan, M. (2015). BIOINFORMATICS-BASED MOLECULAR CLASSIFICATION OF Arthrobacter PLASMIDS. Cellular & Molecular Biology Letters, 20(4), 612-625. doi: 10.1515/cmble-2015-0036

Mokbel, B., Paassen, B., Schleif, F. M., & Hammer, B. (2015). Metric learning for sequences in relational LVQ. Neurocomputing, 169, 306-322. doi: 10.1016/j.neucom.2014.11.082

​Pop, M., & Salzberg, S. L. (2015). Use and mis-use of supplementary material in science publications. Bmc Bioinformatics, 16. doi: 10.1186/s12859-015-0668-z

Rao, X. J., Shahzad, T., Liu, S., Wu, P., He, Y. T., Sun, W. J., . . . Yu, X. Q. (2015). Identification of C-type lectin-domain proteins (CTLDPs) in silkworm Bombyx mori. Developmental and Comparative Immunology, 53(2), 328-338. doi: 10.1016/j.dci.2015.07.005

Santander-Jimenez, S., & Vega-Rodriguez, M. A. (2015). On the design of shared memory approaches to parallelize a multiobjective bee-inspired proposal for phylogenetic reconstruction. Information Sciences, 324, 163-185. doi: 10.1016/j.ins.2015.06.040

Santiesteban-Toca, C. E., & Aguilar-Ruiz, J. S. (2015). A new multiple classifier system for the prediction of protein's contacts map. Information Processing Letters, 115(12), 983-990. doi: 10.1016/j.ipl.2015.06.008

​Selitsky, S. R., & Sethupathy, P. (2015). tDRmapper: challenges and solutions to mapping, naming, and quantifying tRNA-derived RNAs from human small RNA-sequencing data. Bmc Bioinformatics, 16. doi: 10.1186/s12859-015-0800-0

Verma, A., Jiang, Y. W., Du, W., Fairchild, L., Melnick, A., & Elemento, O. (2015). Transcriptome sequencing reveals thousands of novel long non-coding RNAs in B cell lymphoma. Genome Medicine, 7. doi: 10.1186/s13073-015-0230-7

Wang, D. M., Zhang, D., & Lu, G. M. (2016). A robust signal preprocessing framework for wrist pulse analysis. Biomedical Signal Processing and Control, 23, 62-75. doi: 10.1016/j.bspc.2015.08.002

Wang, S., Zhang, K. K., Huang, X., Fan, Y. J., Yang, L. T., & Li, Y. R. (2015). Cloning and Functional Analysis of Thylakoidal Ascorbate Peroxidase (TAPX) Gene in Sugarcane. Sugar Tech, 17(4), 356-366. doi: 10.1007/s12355-014-0354-x

Wang, Y., Zou, X. Q., Guo, Y., Wang, L., Liu, Y. M., Zeng, Q. C., & Zhang, X. Z. (2015). MECHANICAL STRAIN AFFECTS SOME microRNA PROFILES IN PRE-OETEOBLASTS. Cellular & Molecular Biology Letters, 20(4), 586-596. doi: 10.1515/cmble-2015-0034

Wang, Y. Y., Cai, Y. P., & Miao, Y. B. (2015). Evolving-Pattern Analysis of Transient and Long-Term Biomarkers for Cancers: Hepatocellular Carcinoma as a Case. Interdisciplinary Sciences-Computational Life Sciences, 7(4), 414-422. doi: 10.1007/s12539-015-0276-7

Wen, J., Ickert-Bond, S. M., Appelhans, M. S., Dorr, L. J., & Funk, V. A. (2015). Collections-based systematics: Opportunities and outlook for 2050. Journal of Systematics and Evolution, 53(6), 477-488. doi: 10.1111/jse.12181

Willems, S., Fraiture, M. A., Deforce, D., De Keersmaecker, S. C. J., De Loose, M., Ruttink, T., . . . Roosens, N. (2016). Statistical framework for detection of genetically modified organisms based on Next Generation Sequencing. Food Chemistry, 192, 788-798. doi: 10.1016/j.foodchem.2015.07.074

​Zhang, Y. J., Zhu, Q., & Liu, H. F. (2015). Next generation informatics for big data in precision medicine era. Biodata Mining, 8. doi: 10.1186/s13040-015-0064-2